Munc18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking Sites*

نویسندگان

  • Annya M. Smyth
  • Lei Yang
  • Kirsty J. Martin
  • Charlotte Hamilton
  • Weiping Lu
  • Michael A. Cousin
  • Colin Rickman
  • Rory R. Duncan
چکیده

Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null cellular model. Munc18-1 molecules were nonrandomly distributed across the plasma membrane in a manner not directed by mode of interaction with syntaxin1, with a small mean number of molecules observed to reside under membrane resident vesicles. Surprisingly, we found that the majority of vesicles in fully secretion-competent cells had no Munc18-1 associated within distances relevant to plasma membrane-vesicle SNARE interactions. Live cell imaging of Munc18-1 molecule dynamics revealed that the density of Munc18-1 molecules at the plasma membrane anticorrelated with molecular speed, with single Munc18-1 molecules displaying directed motion between membrane hotspots enriched in syntaxin1a. Our findings demonstrate that Munc18-1 molecules move between membrane depots distinct from vesicle morphological docking sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane

Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the ...

متن کامل

Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming.

Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 ...

متن کامل

Molecular mechanism of secretory vesicle docking.

Docking, the stable association of secretory vesicles with the plasma membrane, is considered to be the necessary first step before vesicles gain fusion-competence, but it is unclear how vesicles dock. In adrenal medullary chromaffin cells, access of secretory vesicles to docking sites is controlled by dense F-actin (filamentous actin) beneath the plasma membrane. Recently, we found that, in th...

متن کامل

Munc18-1 Promotes Large Dense-Core Vesicle Docking

Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was re...

متن کامل

The Sec1p/Munc18 (SM) protein, Vps45p, cycles on and off membranes during vesicle transport

Protein phosphatase 1 (PP1, Glc7p) functions in the final stage of SNARE-mediated vesicle transport between docking and fusion. During this process, trans-SNARE complexes, formed between molecules in opposing membranes, convert to cis-complexes, with all participants in the same lipid bilayer. Here, we show that glc7 mutant cells accumulate SNARE complexes. These complexes are clearly different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 288  شماره 

صفحات  -

تاریخ انتشار 2013